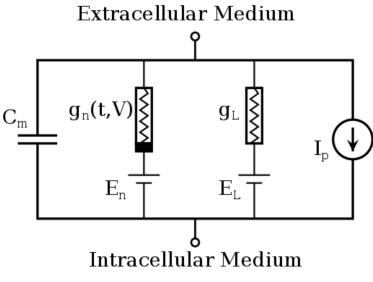
Outline

- HH Model Revisited
- Nonlinear Dynamics in HH Model

HH Model Revisited

Introduction



(figure from Internet)

In HH model, we use 3 additional ODEs to replace the 2 imposed eqs of IF model. And its first ODE is also gotten from its circuit diagram.

$$egin{aligned} &I=C_mrac{\mathrm{d}V_m}{\mathrm{d}t}+ar{g}_{\mathrm{K}}n^4(V_m-V_K)+ar{g}_{\mathrm{Na}}m^3h(V_m-V_{Na})+ar{g}_l(V_m-V_l)\ &rac{dn}{dt}=lpha_n(V_m)(1-n)-eta_n(V_m)n\ &rac{dm}{dt}=lpha_m(V_m)(1-m)-eta_m(V_m)m\ &rac{dh}{dt}=lpha_h(V_m)(1-h)-eta_h(V_m)h \end{aligned}$$

(figure from Internet)

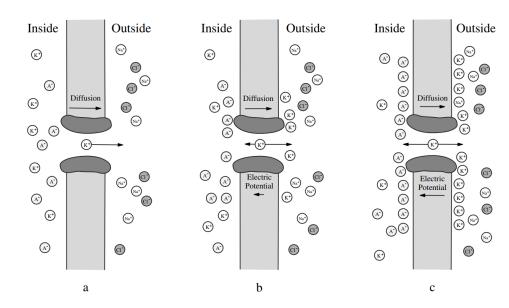
Physical Perspective

- What is the meaning of α and β ?
 - Transition probability in the 2 state Markov chain.
- Why the exponent is 4, 3, 1 for n, m, h in the first ODE?
 - They come from fitting the experiment data.

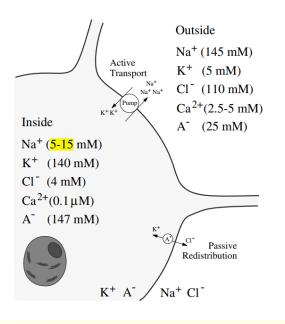
Biological Perspective

There are a few things you need to know:

- How to calculate the V_K and V_{Na} ? (Sometimes they are called Nernst Equilibrium Potential)
 - Method 1: using diffusion equation



- Method 2: using Boltzmann distribution
- What is the quantity of Nernst Equilibrium Potential of typical ions?



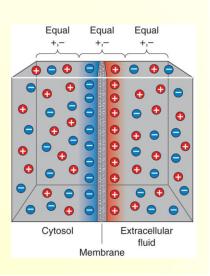
Equilibrium Potentials

Na^+	$62 \log \frac{145}{5} = 90 \text{ mV}$
	$62 \log \frac{145}{15} = 61 \text{ mV}$
\mathbf{K}^+	$62 \log \frac{5}{140} = -90 \text{ mV}$
Cl^-	$-62 \log \frac{110}{4} = -89 \text{ mV}$
Ca^{2+}	$31 \log \frac{2.5}{10^{-4}} = 136 \text{ mV}$ $31 \log \frac{5}{10^{-4}} = 146 \text{ mV}$
	$31 \log \frac{5}{10^{-4}} = 146 \text{ mV}$

lon	Concentration outside (in mM)	Concentration inside (in mM)	Ratio Out : In	E _{ion} (at 37∞C)
K+	5	100	1 : 20	-80 mV
Na ⁺	150	15	10 : 1	62 mV
Ca ²⁺	2	0.0002	10,000 : 1	123 mV
CI-	150	13	11.5 : 1	–65 mV

- What are the concentration of Na^+, K^+, Cl^-, Ca^{2+} inside the neuron and outside the neuron?
 - see above.
- How much will they change during the action potential?
 - $\circ~K^+$

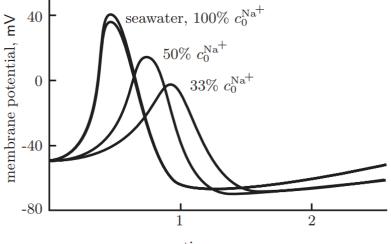
For a cell with a 50 μ m diameter, containing 100 mM K⁺, it can be calculated that the concentration change required to take the membrane from 0 to -80 mV is about 0.00001 mM.



That is, when the channels were inserted and the K⁺ flowed out until equilibrium was reached, the internal K⁺ concentration went from 100 to 99.99999.

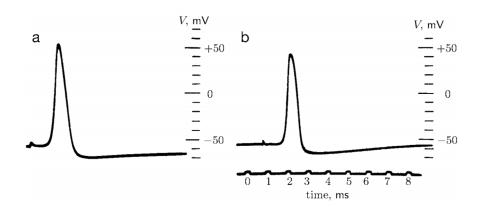
• Ca^{2+} :???

- What does the $Na^+ K^+$ pump do in the action potential? Is it the same thing as the ion channel?
 - hyper-polarization.
 - o no.
- 3 ways for Na^+, K^+ to pass the membrane
 - leaky
 - ion channel
 - ion exchanger/ion pump
- Why HH only used Na^+ and K^+ ?



time, ms

(Figure 12.7 of Biological Physics)



left panel: an axon filled with potassium sulfate solution.

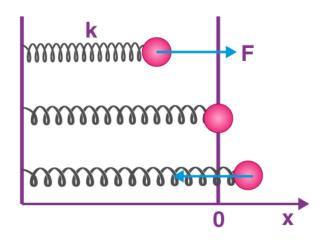
right panel: an normal axon.

(Figure 12.13 of Biological Physics)

Nonlinear Dynamics in HH Model

Introduction

Eg1: harmonic oscillator



Eg2: simple pendulum

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \pm \sqrt{2a^2 \cos x - C_1}.$$

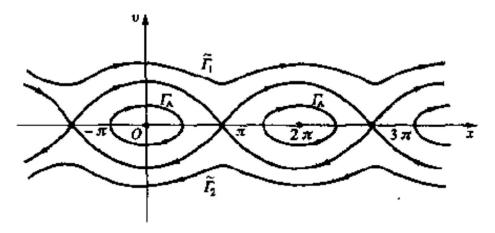


图 5-5

Fixed Point

- nullcline
- vector field

Limit Cycle

• Poincare-Bendixson TH

