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1 Introduction

In simple words, control theory is when you want to control certain physical
quantity (let’s say temperature of your room or the speed of your car) near
certain value.

The simplest form of control is open-loop control. For example, if you want
your car to maintain a certain speed, you just need to press the gas pedal to a
specific angle. In , u is the angle of the accelerator pedal and x is the
speed of the car. But if you want your car to move at a given speed, say, 30
km/h, you may refer to close-loop control.
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Figure 1: Human Driving

u w
R ———

Figure 2: open loop control

Close-loop control is a little more complicated. As shown in , the
output signal x is transmitted back to the system. Imagine that you want to
let your car moving at 30 km/h, you had better look at the speedometer and
change the angle of the accelerator pedal according to that.

To make things more clear, we introduce the concept of ”controller”, shown
in . In human driving, the controller is the driver while in auto driving,
the controller is the machine. Attention! Using the language of reinforcement
learning, the controller is the agent and the system is part of the environment.
Remember Yukun Cheng once talked about a cyber C.elegans. In that paper,
the computer is the controller and the agent while the worm is the system, part

of the environment. The math form of [Figure 4 is [Equation 1d.
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Figure 3: close loop control

controller system

Figure 4: adding controller

In some cases, like fluid mechanics or neuroscience, x has very high dimen-
sion, even 10*. We don’t have the time and money to measure every component
of x. To figure this out, scientists will just measure part of x. In , y is
the partial observation of x and Z is the inferred x by the estimator. Usually,
dim(y) << dim(x). In the example of the pendulum, ‘, the Kalman
filter will be used as the estimator while the linear quadratic regulator (LQR)
will served as the controller. The math form of [Figure § is [Equation 13.

controller system

estimator

Figure 5: adding estimator

The latter part is organized as follows: is about the evolution
of a system without control. pection 3 will tell you how to add the control
signal to make the system stabilized at an initially unstable location. Then,
. will use the inverted pendulum as an engaging example, which has




enormous videos on YouTube (e.g.:Inverted Single Pendulum, Inverted Triple
Pendulum). In pection 5, we will introduce the concept of data-driven-control
and the Willems fundamental lemma. Next, we will talk about how to view a
neuron as a controller in , which can be skipped if you don’t care about
neuroscience. Last but not least. a story between James Clerk Maxwell and the

control theory is told in .



https://www.youtube.com/watch?v=nOSTzpA0nGk
https://www.youtube.com/watch?v=I5GvwWKkBmg
https://www.youtube.com/watch?v=I5GvwWKkBmg

2 Without Control

We start with a dynamic system

X = f(X) (1)
, where f(X) is a non-linear function R™ — R™ and X(t) is R — R™.

How do we analyze the behavior of this system? Is it stable or unstable?
Usually, a system has 2 kinds of stable state, one is every value keeping the
same, the other is periodical change. You see the first kind in a dead neuron,
and the second kind in a persistently firing neuron. Mathematicians call the
first fized point and the second limit cycle. Throughout this note, I will limit
myself to the first kind. You may refer to Yukun Cheng’s note on the chaos
control theory of for the second kind.

When will every value keep the same? Obviously, this means

X=0 (2)
Looking at @)7 we get

f(X)=0 ®3)
We denote X which makes (E) standing, that is, the fixed point of the system.
A fixed point is called stable if when the system is slightly deviated from
this point under perturbation, it will go back to the point. How do we know if
a fixed point is stable or not? Unstable fixed point is like a ball on the top of
the hill while stable fixed point is like a ball at the bottom of the bowl. Well,
we can do a local linearization in n dimensions, just like we analyze the slope of

the hill or the bowl in 2D or 3D.
We do a multi-variable Taylor expansion around X and only keep the first

order
Df

FX) = fX) + 5Ix (X = X) (4)
where ?Ti is the Jacobian Matrix.
If we set X as 0 (by translating the coordinate system) and denote %i as
A, we get a linear equation
f(X)=AX (5)
Combine with (E), we get .
X = AX (6)

We can prove that (see in the appendix)
X =) cgeM (7)
i=1
where ¢ is constant vector and \; is the eigenvalue of A.
Obviously, the fixed point is stable if and only if
Vi, Re(X\;) <0 (8)

See Eubsection 8.5 for local linearization not around the fixed point and
Eection ill for an intuitional example using the pendulum.



https://en.wikipedia.org/wiki/Taylor_series#Taylor_series_in_several_variables
https://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant

3 With Control, Knowing the System

Now we have came to the really fun part.

I gonna show you that, under certain circumstance, we can make eigenvalue
to be any value you like. In other words, we can make the original unstable
fixed point to be stable, like what is shown in .
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The Fixed Point Without Control

The Fixed Point With Control

Figure 6: Drive the Fixed Point

To add control, we simply add Bu to the right hand of side of :

X = AX + Bu (9)

where X € R",u € R%, A € R**", B € R"*4,

To make things simpler, we shall not consider the estimator at the first place
and we assume linear relation of u and X: u = —K X.

Put them together:

X = AX + Bu
{u = -KX (10)
where K € RI*",
is the math form of .
So
X =(A-BEK)X (11)

Mathematicians have proved that, if we define C := [B, AB, A?B,--- , A" 1B]

rank(C) = n & (A—BK) has any eigenvalues < X can reach any point in R"™
(12)
And we call the system controllable when rank(C) = n.
There is an one-line-code in MATLAB to calculate C.

C = ctrb(A,B)




Attention. In real world, A, B are usually fixed for a given system while K
is not. In other worlds, you can only change K, rather than A, B.

There is an one-line-code in MATLAB to calculate K, based on eigenvalues
you want and known A, B.

1 |K = place(A,B,eigs_wanted)

There is a similar concept to controllability, observability.

Consider )
X = AX+ Bu
y = CcX (13)
u = —Kz

where y € R™.C € R™*X"™,
is the math form of Figre 4.

We call a system observable if:
rank(O) =n (14)

where O := [C, CA, CA2%, ... CA" 1T,

Roughly speaking, a system is observable means that y conveys all the infor-
mation of x and u. To be more precise, a system is said to be observable if and
only if, for every possible trajectory of state and control vectors (z and w), the
current state vector x can be estimated using only the information from outputs
y. On the other hand, if the system is not observable, there are state-control
trajectories that are not distinguishable by only measuring the outputs.

There is also an one-line-code in MATLAB to calculate O.

1 |0 = obsv(A,C)




4 Pendulum

4.1 Inverted Pendulum

This subsection corresponds to gection 2.

A single pendulum is a stick (attention, not a rope) with a ball at the end.

Figure 7: Single Pendulum
By the second law of Newton, we get
—mgsin(0) = ma + f

where f is the friction of the air and f is proportional to 6.

Define
0
X M

X = [sm())gj) 69]

where € is a small positive number.

Then

Obviously, this system has 2 fixed points, (0,0) and (7, 0).

(15)

(In math, this

system has infinite fixed points, (2k7,0) and (7 + 2km,0),k € Z, but only twp

of them bring new physical contents.)

Figure 8: Two Fixed Points



The phase portrait is shown below. In , the upper and lower trajec-
tory represents rotation while the circle represents oscillation. In [Figure 10, all
trajectory will finally fall into fixed points at (2k7,0),k € Z
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Figure 9: Phase Portrait without Friction[lil]

g
=

N

3

_/

-7 m
Angular Displacement

—
W

)

f}ngular Velocity
\Z

I
w

)

Nian\

N

2
)
a

Figure 10: Phase Portrait with Friction[m]

Now, armed with the math tool of , we are ready to analyze the
stability of these two fixed points. We denote:

- 0| & ™
fo M fo M (18)
The Jacobian matrix is:

px = ety 2

DX  |—cos(Xy) -—e¢ (19)

Then, we implement local linearizations:
Df|__ 0 1 Df|__ 0 1 (20)
DX 7 |-1 —¢[’ DX [+1 —e

It is obvious that, when € = 0, both fixed points are unstable, and when
€ > 0, X, is stable while X5 is unstable.

4.2 Inverted Pendulum on a Cart

This subsection corresponds to Eection i
The codes of this section can be got from beré.




A+ 2,
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Figure 11: Without Friction

A+ 2,
Unstable Region Unstable Region
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Figure 12: With Friction

4.2.1 Drive the Eigenvalue

Is there a way to make X, stable? Imagine that you use your hands to control
the system. When the ball falls to the right, just move your hands slightly to
the right. The following graph is a formalized way of it.

Figure 13: Inverted Pendulum on a Cart [E]

The ODEs of the system is exactly ,
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where

T 0 1 0 0 0

i 0 -5 bmg 0 L1

— — M M — M
X=1lo| 4= 10 o o 1°P=]70 1)

2 bs b(m+M b

0 0~ 0 T

b =1 for the up fixed point, and b = —1 for the down fixed point.
You can check the controllability and observability of this system using
MATLAB.

m = 1;
M = b;
L = 2;
g = _10:
d = 10;
b = -1;

A=10010 0;
0 -d/M -m*g/M 0;
000 1;
0 -bxd/(M*L) -bx(m+M)x*g/(MxL) 0];

eig(A)

B

[0; 1/M; O; bx1/(MxL)];

C

eye (4);

rank (ctrb(A,B))
rank (obsv(A,C))

Then, you can use the built-in function ‘place‘ to drive the eigenvalue to
anywhere you like.

[-.01; -.02; -.03; -.04]1;

o
]

=~
]

place(A,B,p);

4.2.2 Linear Quadratic Regulator

If you have experimented with eigenvalues, you will find that the smaller the
eigenvalues are, the faster the system returns to the fixed point, but the more

11
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vulnerable the system becomes.

In general, you can’t have both things at the same time. There is a trade-
off between the robustness of the system and the time/energy required by the
controller. The Linear Quadratic Regulator (LQR) was developed to find this
trade-off point.

We define a lost function

J = / +OO(XTQX + u” Ru)dt (22)
0

where @ is R™*™ and R is R?*9. Q measures the robustness while R measures
the control cost.
The intuition of this function is just like enormous quadratic forms in ma-
chine learning: it is much easier to calculate derivatives on the quadratic form.
In the pendulum example, we may set:

Q =1[100O0;
010 0;

0 0 10 0;
0 0 0 100];
.0001;

o
]

Q = diag(1,1,10,100) means the deviance of 6 is the most unbearable.
Fortunately, there is also an one-line-code in MATLAB to calculate K using

LQR.

K = qu‘(A,B,Q,R);

I strongly recommend running the codes by your self, where you will see a
very smooth movement of the system using the K of LQR.

4.2.3 Kalman Filter

In the pendulum example, what if we can only do partial measurement? Like
the Figue 3

First, you need to check the observability.

A=1[010 0;

0 -d/M -m*g/M 0;

000 1;

0 -s*d/(M*L) -sx(m+M)x*g/(MxL) 0];
B = [0; 1/M; 0; s*x1/(MxL)];
CcC=1[100 0];

rank (obsv(A,C))

By changing C, you will find that, the system is observable if and only if we
measure .

12




After making sure the system is observable, we need to estimate X based on
y. Kalman filter is one way to fulfill this task, as shown below.

controller system

estimator

Figure 14: Kalman Filter

The codes are here:

%% Augment system with disturbances and noise
vd .1xeye(4); 7 disturbance covariance

Vn = 1; % mnoise covariance
BF = [B Vd 0#B]; 7, augment inputs to include disturbance and
noise

sysC = ss(A,BF,C,[0 0 0 0 O Vnl); 7 build big state space
system... with single output

sysFullOutput = ss(A,BF,eye(4),zeros(4,size(BF,2))); 7’ systen
with full state output, disturbance, no noise

%% Build Kalman filter

[L,P,E] = 1qe(A,Vd,C,Vd,Vn); 7 design Kalman filter

Kf = (lqr(a',C',Vd,Vn))'; % alternatively, possible to design
using "LQR" code

sysKF = ss(A-L*C,[B L],eye(4),0x[B L]); 7 Kalman filter
estimator

13




5 With Control, Not Knowing the System

5.1 Overview

Things we have been talking about so far are fantastic, it seems that we can
control anything use some one-line-codes of MATLAB. Perfect.

However, if the year of 2022 has got us anything to remember, the world is
far from perfect.

Note that, in commands like K=place(A,B,eigs_wanted) or K=1qr(4,B,Q,R),
you must already know A and B. Is that always possible?

Of course not!

In fluid mechanics, we know the dynamics of the system, but usually we
have tens of thousands of dimensions, which leaves us unable to write A and B.
In neuroscience, we don’t even know the ODEs of the system. Using the words
of statisticians, now we have no prior knowledge, we have no choice but to rely
on the data.

Scientists of 20 century developed the so-called data-driven control, which
use the data to infer the differential equations of the system (called system
identification) and to drive the system to certain fixed point or limit cycle.
Data-driven control is also called machine learning control.

Some methods like Balanced Truncation (projecting into a lower dimensional
space), Balanced Proper Orthogonal Decomposition (producing reduced models
for fluids) and Dynamic Mode Decomposition (estimating the leading eigenval-
ues and eigenvectors) are briefly introduced here,

These methods can be classified to indirect and direct (To clarify, the indi-
rect still involves 2 steps: first you need to identify a model, then a controller
is tuned based on such model. The direct, on the other hand, maps the exper-
imental data directly onto the controller, without any model to be identified
in between.), iterative and non-iterative, on-line and off-line, according to the
Wikipedia article. A neuron seems to perform direct, iterative and on-line data-
driven control.

Below, I shall introduce a state-of-the-art (comment from [3]) result for direct
data-driven control: the Willems fundamental lemmal4].

5.2 The Willems Fundamental Lemma

Here is a thing, the Willems fundamental lemma is proved under 3 conditions:
linear, time-invariant, controllability. However, in real life, physicists seem to
just use it, even if they know the system is non-linear.

Let us go back to and set x € R",u € RY,y € R™. Now, imagine
that you have no prior knowledge of the system. You have no choice but to view
it as a black box. You give it an input u, and get an output y from it. You give
it an input time series u(¢), and get an output time series y(¢) from it. Roughly
speaking, the Willems fundamental lemma claims that: if your u(¢) has enough
variance, all possible trajectories of u(t) and y(t) can be obtained from a single
trajectory of u(t) and y(t).
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https://fab.cba.mit.edu/classes/865.21/topics/control/06_data_driven.html
https://en.wikipedia.org/wiki/Data-driven_control_system
https://en.wikipedia.org/wiki/Data-driven_control_system

To make it stricter, we need to introduce the concept of persistent excitation.
A time series u(t),t € {1,2,--- ,T} is called persistently excited of order k if

u(1) w(2)  w@) - uwT—-k+1)
u(2) u(3) oo w(T—k+2)

Hy = |u(3) : : (23)
wl) w(kD) T

has full row rank, ¢gk. H stands for the Hankel matrix. A necessary condition
for u(t) to have persistent excitation of order k is T > (¢ + 1)k — 1.

If you write codes to test the H matrix, you’ll find that, a little variance in
u(t) (for example, sampled from round(N(0,0.3))) can lead to full row rank.

The Willems fundamental lemma claims that (Theorem 1 in [4]): if u(¢) has
the order of n+ L (i.e., the rank of H is g(n+ L)), then the observed windows of
length L spans the space of all possible windows of length L which the system
can produce.

In math form:

Uo u(0) u(l) - w(T —L) ]

Uy u(1) w(2) -+ w(T-L+1)

: : : - : 90
Ur,—1 _ U(L— 1) u(L) u(T— 1) g1

Yo y(0 @) - y(T-1L) :

n y@)  y@2) - y(T-L+1) T PR
-gL._l- (g+m)Lx1 —y(L ._ 1) y(L) y(T._ 1) 4 (g+m)Lx(T—L+1)

(24)
where the L.H.S. is any trajectory of (u,y) that the system can produce and
g is some constant vector. Of course ¢ is different for different L.H.S..
To make [Equation 24 more clear, we can rewrite it as:

9o
- - g1 =L
I=[lo b - ]| | =l (25)
: i=0
9Tr-L
where [ is any trajectory of (u,y) and {ly,l;,--- ,lr_r} are "the observed

windows of length L”. That is exactly what "the observed windows of length
L spans the space of all possible windows of length L which the system can
produce” means.

The Willems fundamental lemma has a corollary (Corollary 2 (ii) in [4]): if
u is persistently exciting of order n + 1, (i.e., the rank of H is ¢(n + 1)), then:

rank{ ZE}; Zg:g }=n+gq (26)
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6 The Neuron as a Direct Data-Driven Controller

section § is a note of [§] by Dmitri Lab.

6.1 Why Controller? | The Active Sampling

Why do we need to view the neuron as a controller? The answer to me is the
neuron or the whole brain seems to have the ability of active sampling.

Neuroscientists used to believe that receiving sensory inputs is a static pro-
cess. The famous work of Hubel and Wiesel on the retina is also this kind of
view. By in fact, the eyes of human can move 3 times in a second (Even if we
don’t realize it). We are actively sampling, choosing what to see next, instead
of just staying there, passively waiting.

In touch and hearing, the active sampling is more obvious that in vision.
Below are quotes from Jeff Hawkins’ A Thousand Brains New Theory of Intel-
ligence.

If someone places an object onto your open hand, you cannot
identify it unless you move your fingers. Similarly, hearing is always
dynamic. Not only are auditory objects, such as spoken words, de-
fined by sounds changing over time, but as we listen we move our
head to actively modify what we hear.[(]

But up to my knowledge, there is no satisfactory mathematical model for
the active sampling. However, this 2024 paper may be a possible solution.

6.2 Notation

Dmitri’s paper assumes linearity (see :

Xt+1 = AXt + B"U,t
Y = CX; (27)
Ut = —K{)Ai't

where X € R", u € R, A € R"*" B e R" ¢y R™ C € R™*",

For non-linear situation, he made an explanation, see .

This paper implements the Willems fundamental lemma in the following
way: set L as 2, T as k and & = y, drop the row of w41 , then

Lot Tig1 o0 Tpg]| |9
Ty | = &1 - I : (28)
ut ul .. uk gk
The authors let {(u1,&1), (uo,&2), -, (Ugt+1,Zr+1)} be the time series in

, which can be viewed as the data collected in a sufficient long
experiment, and let (u¢, &) be any trajectory of (u,Z) that the system can
produce. In other words, future observation-control pairing can be expressed as

16



neuron

environment

Xi4] = Axt = but
Vi = Cx¢

Figure 15: Illustration 1

a linear combination of k£ historical pairings. Attention please, throughout the
paper, future observation-control pairing expressed as a linear combination of
historical pairings is equivalent to the successful controlling.

6.3 STDP

It is said that Spike-timing-dependent plasticity
discovery in neuroscience in 1990s.
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A_t<0

igure 16 is the figure 7 of

(STDP) is the most important
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Figure 16: STDP

Dmitri’s paper offers a new perspective to explain STDP. Here, the system
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is the pre-synaptic neuron and the controller is the post-synaptic neuron, like
in — igure 4.

First, for simplicity, they set n =¢ =1 and £ = y = z, so (see ):

Ti41 = AT + but (29)

neuron

synapse, w

X

environment

Xt4] = aX¢ + bug

Figure 17: Illustration 2
They utilize LQR to get the optimal u*:
up = argminglla | + rflu]* (30)
Then the optimal weight is:
w* = uy/zy (31)

Note that, x represents the firing rate of the pre-synaptic neuron, u repre-
sents the firing rate of the post-synaptic neuron and w stands for the synapse
weight. The fixed point of the system is = 0 (i.e. the pre-synaptic neuron is
at rest).

0 f1+1 C. ik+1 g1
Bl = a3 - @ : (32)
ut ul PR uk gk

After a little of deductions, they got:

k k
w* Za:TuT - cos(fX\Jr) Z;ETHuT,where cos(f)a) = (X XD X xT.

T=1 T=1
cos(X X ) is a constant belongs to (0,1).
tells us:

18
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e In the natural condition, the system will always return to its fixed point
(i.e. the pre-synaptic neuron is at rest).

e In the experimental condition, when the pre-synaptic neuron always fire
before the post-synaptic neuron by experimenters, then w* > 0. The
smaller the time interval, the bigger w* is.

¢ In the experimental condition, when the pre-synaptic neuron always fire af-
ter the post-synaptic neuron by experimenters, then w* < 0. The smaller
the time interval, the smaller w* is.

e For the same time interval, the absolute value of w* of potentiation is
bigger than that of depression.

Here is a twist, if w* = u}/x; perfectly stands, then the rank of the matrix
in will be smaller than 2, then u is not persistently exciting of
order 2, then future observation-control pairing can not be expressed as a linear
combination of historical pairings. To fix this, the author add a noise term:

uy = wrry + e (34)
My comment: The author should have done_a_simulation and compare their
stmulation result with the experiment result in , but they didn’t.
6.4 Feedforward and Feedback Kernel
In figure 3 of [f], the author handled below data in a uniform framework:
1. The blowfly H1 neuron with varying background luminance.

2. Mouse V1 pyramidal neurons responding to different mean injected cur-
rent waveforms.

3. Salamander retinal ganglion cells exposed to distinct visual stimuli.

4. Drosophila olfactory receptor neurons reacting to varying odorant concen-
trations.

5. Pyramidal neurons in the rat somatosensory cortex stimulated with cur-
rent injections of diverse means and variances.

How do they process so many different kind of data using the same pipeline?
That is not mystery, let me clarify it.
To do this, the author extended Fiéure 15 to add a feed-back term. Before,
we see the environment as a black box. Now we still remain that way, and just
use the data to infer Kty and K sp, instead of trying to get A, B, C. To simplify,

they maken > 1,g=1,m=11in Eiéuation 21.

Still
{Xt+1 = AXt + But
Ye = CX;

(35)
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neuron

Xg11 =Ax; + by
v = Cx

environment

Figure 18: Illustration 3

They let the neuron use the recent past history of u and y (In fact, those
are all the things the neuron can exploit) to infer z, i.e.:

Bt = [Yrns s Yooty Uty U] (36)

Still we have u = K&, but now we divide K into two terms: K = [Kys, K],
so we have:

= KpplYen - ye—1)" + Kpp[tgn - ugq]” (37)

An intelligent reader might spot that, after being flipped horizontally, the
physical content of Ky is the same as the traditional kernel, which is widely
used since Hubel and Wiesel. Check for this.

It is very easy to calculate Ky and Ky from the experimental data.

Denote R
U= [u1 Ut] and X = [5%1 ft] (38)
Then R
U=[K;p Kp|X (39)
So
N PR —1
Ky Kp]=UXT(XX7) (40)

In figure 3 of [E}, they showed the result K¢y and Ky, of datasets mentioned
above.

My comment: It is interesting to see the the traditional kernel from the
perspective of control theory.

6.5 The Experiment of Terry Lab

In 1995, the lab of Terry Sejnowski finished an astonishing experiment:
P.S.: Although the right panel of Figure 19 was also reported in 1976 (figure
4 of [§]), Terry’s work gained much more attention than the latter one.
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Figure 19: Figure 1 of [4]

is the experiment result of single neuron of the rat brain slice, via
current clamp.

Think about the Hodgkin-Huxley model. If you do simulation using com-
puters, you will get the right down panel for both A and B. Why will the neuron
lose synchronization in A? Why will the neuron regain synchronization in B by
adding noise (according to Dmitri, 50 pA)?

In this 2024 paper, Dmitri came up with that, in simple words, when the
input signal is exactly the same, the rank of Hankel matrix in
becomes 1, so the neuron lose the ability as a controller, which means that, it
can not generate new output based on the history of input/output pairs. And

that leads to the fail of synchronization.

To be stricter, Dmitri claimed: if the input signal is not varied enough, then
the condition number of the covariance matrix X X7 of will be very
high, which leads to huge error when the neuron is calculating (X X7)~!, so the
neuron’s response will be irregular.

At last, Dmitri gave a way to prove his hypothesis via experiments:

Our hypothesis posits that the singularity at constant current can
be empirically validated by measuring spike time variability against
noise variance below the threshold reported in [J], and correlating it
with the condition number of the time-delay covariance.

My comment: Dmitri used a qualitative explanation, rather than the quan-
titative. He also didn’t show the details of the experiment design. Given that
this paper is only an archive version now, they might develop a quantitative
explanation at the final version.

6.6 My Comment of the Whole Paper

You might think that this paper is too imaginative to be true. You might also
think that this paper is untrustworthy. Both the comments make sense. How-
ever, I want you to compare neuroscience with electrodynamics and to recall the
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period of Michael Faraday. At that time, the field of electrodynamics was also
chaotic, with many theories rising and falling, just like the field of neuroscience
now. Faraday’s field theory was also imaginative to be true and it was declined
by great names like Carl Friedrich Gauss, Franz Ernst Neumann and Wilhelm
Eduard Weber. Chaos means fear but flourish while elegance means
beauty but death. After James Clerk Maxwell developed his theories, which
was validated by the experiments of Heinrich Hertz, the field of classical elec-
trodynamics was exactly ”The building has already been completed; only minor
finishing touches remain.”

Some theoretical neurosciencetists have already viewed the neuron as the
agent in the framework of reinforcement learning. My intuition tells me, their
work is equivalent with the work of Dmitri.

A successful theoretical work must predict new experiment phenomena, like
the theory of Maxwell predicting electromagnetic wave and the DNA double
helix predicting the semi-conservative replication. I am looking forward to the
prediction made by Dmitri lab in the final version of this paper.
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7 The Story of Maxwell and Control Theory

Much of the content in lsection ﬂ and lsection 3| is developed by a GOAT physicist:
James Clerk Maxwell. In 1868, he published a paper named On Governors, in
which he did a dynamics analysis of the centrifugal governor, a machine used to
regulate the velocity of windmills. Because of that, Maxwell is widely regarded
as "the father of control theory”.

Here is a funny story of Maxwell. There is a mathematician, named Edward
John Routh, who also did great contribution to the control theory (Routh—
Hurwitz stability criterion is named after him). James Clerk Maxwell (1831-
1879) and Edward John Routh (1831-1907) were both born in 1831, both studied
in the Cambridge University and were both the student of William Hopkins, a
very famous mathematician at that time. In 1854, 23-year-old Maxwell and
Routh took part in the Mathematical Tripos of Cambridge, which was the one
of the most difficult exams all over the world. People who got the first and
second highest score would be documented forever (check the list here), where
the former would receive the title of ”Senior Wrangler” and the latter would be
”Second Wrangler”. In 1854, Who would win?

It turned out that Maxwell received the second highest score and Routh came
to the first. It is said that, Maxwell was very upset about this result, believing
his math would never surpass Routh’s. Then, a tearful Maxwell turned to
physics thoroughly. The rest of the story is already known to you.

What did I learn from this story? and even from this whole note?

Well, the world is far from perfect, so I am going to make it a better place.

The world is far from perfect and my abilities are limited, so I will find the
things I am better at and unite all the people I can unite.

Now, I am also 23-year-old. It is time to decide who I really am.
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8 Appendix

8.1 Solve the Linear Dynamic System

Define T as following
T frng [51 e

where £ - - - £, are eigenvectors of A.
Obviously (recall the similarity transformation in the linear algebra)

&nl

A=TDT™ !

where D = diag(\1,- -, A\n) and \; is the eigenvalue of A
Define Z:
Z=T7'X

We get: '
Z=DZ

(42)

(43)

(44)

which is a decoupled equation (that is, no two components of z are related to

each other).

That is
% /\1 0 e 0 Z1
S 0 X -+ 0] |2
ddzt" 0 0 Ml |20
So,
21(t) ettt 0 0 21(0)
2o(t) 0 et 0 22(0)
2n(t) 0 0 - et |2,(0)

Because of X =TZ:

xl(t) Z?:l Tu(i’)\itzi(()) THZl (0) T12Z2 (O)

Xro (t) Z?:l TgieA’?tzi(O) ot T21 Z1 (0) Aot TQQZQ (0)
= ) =et . +e™? . +:

Tn (1) S Thietitz;(0) Ty121(0) Th222(0)

Notice that T1121(0) etc. are constant scalars, so we get .

The proof is done.
By the way, we can introduce a notation:

1 1
e“:I+At+§A2t2+---+—|A"t"+---
. mn.

Then Z = eP*Z(0) and X = e X(0)
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8.2 Local Linearization Not Around the Fixed Point

In fact, we can do local linearization at any points, not just the fixed point.

Xi = f(X)+ 2L (X1 - X)
{X2 70 + B (- %) (49)
Then
dAX _ yax (50)

dt
where AX 1= Xy — X; and A4 := g—ibg
If we define Y := AX, then

Y = AY (51)

In Dmitri’s paper, he came up with an idea that the neurons (served as
controllers) in certain layer of an artificial or biological neural network were
doing local linearization at different points to make the system always being
controlled like a linear system. That is, at some point, we can control the AX
around it. And if X moves too much off it, we can control the AX around
another point.
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8.3 Feedthrough Term

We can also add feedthrough term in

X = AX+Bu
y = CX+ Du (52)
u = —Kz

But in most real world systems, D is 0.
The most general form is

2 e X
([T T
=N
5=
e g

controller system

estimator

Figure 20: Adding Feed-Through
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8.4 The Feedforward Kernel of Dmitri vs Traditional Ker-
nel

In traditional kernel method, we will denote stimulus as S, response as R and
assume:
R=SxK (54)

where * stands for convolution and K is called kernel.

This assumption fits the data of retinal and V1 very well, although fails in
more advanced regions like V2 and V4. Check the chapter 2 of [@] for how to
use the Wiener series to deduce the spike-trigger-average method to get K.

Rewrite [Equation 54 in discrete terms:

t—1
Ry= > SiKi (55)
i=t—n
Now rethink the first term of the R.H.S. of , which can be written
as:
= Kyplyr—n--- yt—l]T = Z yif(i (56)

i=t—mn
where represents the first part of uy and K := K if
Lookln at

quation 55).

So rewrite ll_@guation 5d:

~ t71 ~ ~
= Y SK; (57)
i=t—n

where Ry := @iy and S} := fj,.

Compare [Equatlon 551 and lEquatlon 5?| You will find that the feed-forward
kernel of Dmitri and the traditional kernel are horizontally flipped versions of
each other.
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